

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Nornir

Please visit the website [http://danieledesensi.github.io/nornir/] of the project.

Graphite C Client

Downloaded from https://github.com/vdevos/graphite-c-client.git

This trivial pure C Graphite client allows you to send metrics to Graphite using socket(7) [http://linux.die.net/man/7/socket]

Usage

from client.c

#include "graphite-client.h"

int main(void)
{
 graphite_init("127.0.0.1", 2003);

 graphite_send_plain("server.process.task", 1.0, 1368777314);
 graphite_send_plain("server.process.task.processing", 12, 1368777314);
 graphite_send_plain("server.process.task.waiting", 10, 1368777314);

 graphite_finalize();

 return 0;
}

Compiling

Makefile

make all

Manual

gcc -g -Wall -o graphite-client.o -c graphite-client.c
gcc -g -Wall -o program main.c graphite-client.o

 [image: ../../../_images/knarr.svg]Build Status [https://travis-ci.org/DanieleDeSensi/knarr] [image: ../../../_images/badge.svg]codecov [https://codecov.io/gh/DanieleDeSensi/knarr]

This is a simple performance monitor for parallel applications based on nanomsg.
Detailed description coming soon.

cppnanomsg: C++ binding for nanomsg library

To build:

	git clone git@github.com:nanomsg/cppnanomsg.git

	cd cppnanomsg

	mkdir build

	cd build

	cmake ..

	make

	make test

	sudo make install

Alternatively, given that the binding consists of a single header file,
rather than installing it, you can avoid dependency and make nn.hpp part
of your project.

Welcome to nanomsg

[image: ../../../../../../_images/nanomsg.svg]Release [https://github.com/nanomsg/nanomsg/releases/latest]
[image: ../../../../../../_images/license-MIT-blue.svg]MIT License [https://github.com/nanomsg/nanomsg/blob/master/COPYING]
[image: ../../../../../../_images/master.svg]Linux Status [https://travis-ci.org/nanomsg/nanomsg]
[image: ../../../../../../_images/master1.svg]Windows Status [https://ci.appveyor.com/project/nanomsg/nanomsg]
[image: ../../../../../../_images/gitter-join-brightgreen.svg]Gitter [https://gitter.im/nanomsg/nanomsg]

The nanomsg library is a simple high-performance implementation of several
“scalability protocols”. These scalability protocols are light-weight messaging
protocols which can be used to solve a number of very common messaging
patterns, such as request/reply, publish/subscribe, surveyor/respondent,
and so forth. These protocols can run over a variety of transports such
as TCP, UNIX sockets, and even WebSocket.

For more information check the website [http://nanomsg.org].

Prerequisites

	Windows.

	Windows Vista or newer (Windows XP and 2003 are NOT supported)

	Microsoft Visual Studio 2010 (including C++) or newer, or mingw-w64
(Specifically mingw and older Microsoft compilers are *NOT supported)

	CMake 2.8.7 or newer, available in $PATH as cmake

	POSIX (Linux, MacOS X, UNIX)

	ANSI C compiler supporting C89

	POSIX pthreads (should be present on all modern POSIX systems)

	BSD sockets support for both TCP and UNIX domain sockets

	CMake (http://cmake.org) 2.8.7 or newer, available in $PATH as cmake

	Documentation (optional)

	asciidoctor (http://asciidoctor.org/) available as asciidoctor

	If not present, docs are not formatted, but left in readable ASCII

	Also available on-line at http://nanomsg.org/documentation

Build it with CMake

	Go to the root directory of the local source repository.

	To perform an out-of-source build, run:

	mkdir build

	cd build

	cmake ..
(You can add -DCMAKE_INSTALL_PREFIX=/usr/local or some other directory.)

	cmake --build .

	ctest -G Debug .

	cmake --build . --target install
NB: This may have to be done as a privileged user.

	(Linux only). ldconfig (As a privileged or root user.)

Resources

Website: http://nanomsg.org

Source code: https://github.com/nanomsg/nanomsg [http://github.com/nanomsg/nanomsg]

Documentation: http://nanomsg.org/documentation.html

Bug tracker: https://github.com/nanomsg/nanomsg/issues [http://github.com/nanomsg/nanomsg/issues]

Mailing list: nanomsg@freelists.org [http://www.freelists.org/list/nanomsg]

Gitter Chat: https://gitter.im/nanomsg/nanomsg

IRC chatroom: #nanomsg at irc.freenode.net/8001 [http://webchat.freenode.net?channels=%23nanomsg]

 This code has been downloaded from https://github.com/LEOAlg/HM and adapted in order to integrate it inside Nornir.
The behaviour of this algorithm is described in the paper “A Probabilistic Graphical Model-based Approach for Minimizing
Energy Under Performance Constraints” by Mishra, Nikita and Zhang, Huazhe and Lafferty, John D. and Hoffmann, Henry.

Mammut

For description and tutorials please visit the website [http://danieledesensi.github.io/mammut] of the project.

Introduction

This folder contains external libraries and tools used by Mammut.

odroid-smartpower-linux

linux command line tools for hardkernel smart power device

hardkernel.com Smart Power for ODROID development boards: http://www.hardkernel.com/renewal_2011/products/prdt_info.php?g_code=G137361754360

We provide a linux command line tool to log the voltage, ampere, and watts status from a smart power device
to a file.

Prerequisites:

	libusb (Ubuntu/Linaro Ubuntu: sudo apt-get install libusb-1.0-0-dev)

	pkg-config (sudo apt-get install pkg-config)

	GCC 4.7+

Installation:

	Clone the repository

	Run make in repository

Usage:

sudo ./smartpower logfile

Why sudo?

By default, libusb is not granted write access to a usb device, which is needed to request status information from the device.
Thus, either smartpower is run as sudo, or libusb permissions in /lib/udev/rules.d/50-udev-default.rules are changed to allow write access.

Library

Easy-to-use C++ API for the smart power device.

Installation:

make lib

Usage:

#include <iostream>
#include <chrono>
#include <thread>
#include "smartmeter.hpp"

using namespace std;

int main(int argc, char *argv[]) {
	SmartGauge sg;
	sg.initDevice();

	this_thread::sleep_for(std::chrono::seconds(5));

	cout << sg.getWattHour() << " consumed watt hour" << endl;
}

Compilation:

export ISMARTGAUGE="directory of smartgauge.hpp"
export LSMARTGAUGE="directory of libsmartgauge.a"
g++ -I$ISMARTGAUGE -L$LSMARTGAUGE file_to_compile.cpp -lsmartgauge -lpthread -lusb-1.0 -lrt

programmeter

Usage:
sudo ./programgauge logfile programm_to_measure

PAPI: Performance Application Programming Interface

** Innovative Computing Lab **

** University of Tennessee, Knoxville, TN **

[TOC]

About

PAPI provides the tool designer and application engineer with a
consistent interface and methodology for use of the performance
counter hardware found in most major microprocessors. PAPI enables
software engineers to see, in near real time, the relation between
software performance and processor events.

In addition, PAPI provides access to a collection of components that
expose performance measurement opportunites across the hardware and
software stack.

Getting Started

If this is the first file you’ve opened in the PAPI tree, we’ll try to give you
a few tips on where to go from here.

	Read the license found in LICENSE.txt. It’s pretty short, and not very
restrictive, but it’ll give you an idea of what you can and can’t do with the
PAPI sources.

	Visit the website at: http://icl.utk.edu/papi
There you can find late-breaking news that may be more current than in these
files. You can also find documentation in a greater variety of formats than
in the papi/doc/ directory.

	Sign up for the PAPI mailing list(s). Instructions are on our home page.

	Read the RELEASENOTES.txt file to get an idea of what’s new in the current release.

Installing PAPI

To install PAPI on your system:

	Find the section in INSTALL.txt that pertains to your hardware and operating
system.

	Follow the directions to install required components and build the PAPI
libraries.

	Run the test suite when you are finished to verify that everything went ok.
NOTE: Although we make every attempt to get all tests to PASS or SKIP on all
platforms, there are occasional instances of FAILures due to excessively
tight compliance thresholds or platform idiosyncrasies. Don’t panic if one
or two tests FAIL. Contact us with complete output and we’ll see what we can do.

Using PAPI

To use PAPI in your own programs:

	Read the PAPI Overview found at:
http://icl.utk.edu/projects/papi/wiki/Main_Page.

	Try out the utility programs in /utils to see what’s in your system.

	Try a test program. Source for a number of tests in both C and FORTRAN is
available in the src/tests/ and src/ftests/ directories. Find a program
that’s similar to what you want to do. Make sure you can build it and run it.

	Write a test program of your own, exercising the PAPI events and features of
interest to you.

	Go for broke. Fold PAPI calls into your sources and see what you can learn.

Bugs and Questions

	Visit our FAQ at: http://icl.utk.edu/papi/faq/
or read a snapshot of the FAQ in papi/PAPI_FAQ.html

	Subscribe to the PAPI mailing list at:
https://groups.google.com/a/icl.utk.edu/forum/#!forum/ptools-perfapi [https://groups.google.com/a/icl.utk.edu/forum/#%21forum/ptools-perfapi]

	Read historical postings to the list.

	Post questions to the list.

 This file contains the sysfs tree of some architectures. To be used for
testing purposes.

 #Fast Wait Free Queue

This is a benchmark framework for evaluating the performance of concurrent queues. Currently, it contains four concurrent queue implementations. They are:

	A fast wait-free queue wfqueue,

	Morrison and Afek’s lcrq,

	Fatourou and Kallimanis’s ccqueue, and

	Michael and Scott’s msqueue

The benchmark framework also includes a synthetic queue benchmark, faa, which emulates both an enqueue and a dequeue with a fetch-and-add primitive to test the performance of fetch-and-add on a system.

The framework currently contains one benchmark, pairwise, in which all threads repeatedly execute pairs of enqueue and dequeue operations. Between two operations, pairwise uses a delay routine that adds an arbitrary delay (between 50~150ns) to avoid artificial long run scenarios, where a cache line is held by one thread for a long time.

Requirements

	GCC 4.1.0 or later (Recommand GCC 4.7.3 or later): current implementations uses GCC __atomic or __sync primitives for atomic memory access.

	Linux kernel 2.5.8 or later

	glibc 2.3: we use sched_setaffinity to bind threads to cores.

	atomic CAS2: lcrq requires CAS2, a 16 Byte wide compare-and-swap primitive. This is available on most recent Intel processors and IBM Power8.

	jemalloc (optional): jemalloc eliminates the bottleneck of the memory allocator. You can link with jemalloc by setting JEMALLOC_PATH environment variable to the path where your jemalloc is installed.

How to install

Download one of the released source code tarball, then execute the following commands. The filename used may be different depending on the name of the tarball you have downloaded.

$ tar zxf fast-wait-free-queue-1.0.0.tar.gz
$ cd fast-wait-free-queue-1.0.0
$ make

This should generate 6 binaries (or 5 if your system does not support CAS2, lcrq will fail to compile): wfqueue, wfqueue0, lcrq, ccqueue, msqueue, faa, and delay. These are the pairwise benchmark compiled using different queue implementations.

	wfqueue0: the same as wfqueue except that its PATIENCE is set to 0.

	delay: a synthetic benchmark used to measure the time spent in the delay routine.

How to run

You can execute a binary directly, using the number of threads as an argument. Without an argument, the execution will use all available cores on the system.

For example,

./wfqueue 8

runs wfqueue with 8 threads.

If you would like to verify the result, compile the binary with VERIFY=1 make. Then execute a binary directly will print either PASSED or error messages.

You can also use the driver script, which invokes a binary up to 10 times and measures the mean of running times, the running time of the current run, the standard deviation, margin of error (both in time and percentage) of each run.
The script terminates when the margin of error is relatively small (< 0.02), or has invoked the binary 10 times.

For example,

./driver ./wfqueue 8

runs wfqueue with 8 threads up to 10 times and collect statistic results.

You can use the benchmark script, which invokes driver on all combinations of a list of binaries and a list of numbers of threads, and report the mean running time and margin of error for each combination. You can specify the list of binaries using the environment variable TESTS. You can specify the list of numbers of threads using the environment variable PROCS.

The generated output of benchmark can be used as a datafile for gnuplot. The first column of benchmark’s output is the number threads. Then every two columns are the mean running time and margin of error for each queue implementation. They are in the same order as they are specified in TESTS.

For example,

TESTS=wfqueue:lcrq:faa:delay PROCS=1:2:4:8 ./benchmark

runs each of wfqueue, lcrq, faa, and delay using 1, 2, 4, and 8 threads.

Then you can plot them using,

set logscale x 2
plot "t" using 1:(20000/($2-$8)) t "wqueue" w lines, \
 "t" using 1:(20000/($4-$8)) t "lcrq" w lines, \
 "t" using 1:(20000/($6-$8)) t "faa" w lines

How to map threads to cores

By default, the framework will map a thread with id i to the core with id i % p, where p is the number of available cores on a system; you can check each core’s id in proc/cpuinfo.

To implement a custom mapping, you can add a cpumap function in cpumap.h. The signature of cpumap is

int cpumap(int id, int nprocs)

where id is the id of the current thread, nprocs is the number of threads. cpumap should return the corresponding core id for the thread. cpumap.h contains several examples of the cpumap function. You should guard the definition of the added cpumap using a conditional macro, and add the macro to CFLAGS in the makefile.

How to add a new queue implementation

We use a generic pointer void * to represent a value that can be stored in the queue.
A queue should implements the queue interface, defined in queue.h.

	queue_t: the struct type of the queue,

	handle_t: a thread’s handle to the queue, used to store thread local state,

	void queue_init(queue_t * q, int nprocs): initialize a queue; this will be called only once,

	void queue_register(queue_t * q, handle_t * th, int id): initialize a thread’s handle; this will be called by every thread that uses the queue,

	void enqueue(queue_t * q, handle_t * th, void * val): enqueues a value,

	void * dequeue(queue_t * q, handle_t * th): dequeues a value,

	EMPTY: a value that will be returned if a dequeue fails.

How to add a new benchmark

A benchmark should implement the benchmark interface, defined in benchmark.h, and interact with a queue using the queue interface.
The benchmark interface includes:

	void init(int nprocs, int n): performs initilization of the benchmark; called only once at the beginning.

	void thread_init(int id, int nprocs): performs thread local initialization of the benchmark; called once per thread, after init but before benchmark.

	void * benchmark(int id, int nprocs): run the benchmark once, called by each thread to run the benchmark. Each call will be timed and report as one iteration. It can return a result, which will be passed to verify to verify correctness.

	int verify(int nprocs, void * results): should verify the result of each thread and return 0 on success and non-zero values on error.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up.png

_static/up-pressed.png

